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Abstract
The MultiCoNER II shared task aims to detect
complex named entities for multiple languages.
Inspired by Multilingual Data Augmentation
technique (MulDA) (Liu et al., 2021), in this
project we introduced 6 translation techniques
to augment our training dataset hoping to im-
prove the performance of the baseline and ad-
dress challenges such as sensitivity to noise
and lower performance on out-of-knowledge-
base named entities. Then, we compare the per-
formance to the previous state-of-the-art and
best-performing work, KB-NER (Wang et al.,
2022) and show that our technique achieves
not only better performance than the not aug-
mented baseline but also better or compara-
ble results to the information retrieval based
augmentation. Our code can be found in
https://github.com/chahyon-ku/polygots.

1 Introduction

The named entity recognition task is a critical part
of information extraction in which every word in
a sentence is classified into named entity types
such as names of people, organization, location,
etc. (Nadeau and Sekine, 2007). Since it was first
organized in 1996 at the Sixth Message Under-
standing Conference, many mono- and multilingual
tasks, such as the CoNLL 2003 (Sang and Meulder,
2003), Ontonotes corpus v5 (Pradhan et al., 2013),
and WNUT 2017 Emerging Entities (Derczynski
et al., 2017) were organized to tackle its challenges.

Among named entities, complex named entities
are the more syntactically complex named enti-
ties–often names of creative works–that existing
systems have a hard time recognizing (Ashwini
and Choi, 2014). Complex named entities are
more challenging to detect than traditional ones,
because they are rarer in data, newly created more
frequently, and have more diverse syntactic struc-
tures.

Even though knowledge-retrieval-based systems
achieved great results at the MultiCoNER shared

task from SemEval 2022 (Malmasi et al., 2022),
they are sensitive to noisy and out-of-domain enti-
ties. The MultiCoNER II shared task proposes new
tasks to address the shortcomings of top performing
models from the MultiCoNER shared task.

Our group, Team Polygots, attempt to propose
improvements to the baseline NER model by trying
various data augmentations on the training data.

2 Related Works

2.1 Named Entity Recognition

Named Entity Recognition (NER) is a core natural
language processing (NLP) task (Chen et al., 2022)
that has a lot of applications in academia, market-
ing, medical and security domains. Transformer-
based pretrained language models have achieved
great success in almost every NLP task (Kalyan
et al., 2021) including NER. These models learn
universal language representations from large vol-
umes of text data using self-supervised learning
and transfer this knowledge to downstream tasks
(Kalyan et al., 2021). Multilingual BERT (M-
BERT), released by (Devlin et al., 2019) as a single
language model pre-trained from monolingual cor-
pora in 104 languages, is shown to be very good
at cross-lingual model transfer (Pires et al., 2019).
XLM-RoBERTa (Conneau et al., 2019) is another
pretrained multilingual language model at scale
that has led to significant performance gain for a
wide range of cross-lingual transfer tasks.

2.2 Multilingual Language Models

Fine-tuning pretrained contextual embedding is
a useful and effective approach to many NLP
tasks (Wang et al., 2022) and recently many re-
searchers have put their effort into training fine-
tuned multilingual models such as mBERT and
XLM-RoBERTa to improve their model’s perfor-
mance. (Malmasi et al., 2022) designed a NER
system using XLM-RoBERTa on MultiCoNER I
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dataset that computes a representation for each to-
ken which was then used to predict the token tag
using a Conditional Random Field (CRF) classifi-
cation layer (Sutton and McCallum, 2010). Their
system resulted in a F1 score of 0.478.

2.3 Data Augmentation for Natural Language
Processing

There are four main categories of data augmenta-
tion methods: translation, substitution, generation,
and mix-up. Translation-based methods, such as
MulDA (Liu et al., 2021), translates a sentence to
another language and often back to the source lan-
guage to introduce variance. Substitution-based
methods, such as MELM (Zhou et al., 2022),
replaces characters, words, or phrases based on
heuristics or language models. Generation-based
methods, such as DAGA (Ding et al., 2020) trains
a language model on the training data and ran-
domly sample from the language model to generate
new data. Mix-up-based methods, such as SeqMix
(Zhang et al., 2020), linearly interpolate between
pairs of samples to generate novel sentences.

2.4 Best Models from MultiCoNER I

The first ranked team from MultiCoNER I shared
task, DAMO-NLP (Wang et al., 2022), which got
the highest F1 score for the multilingual task, took
a different approach and introduced a knowledge-
based NER system which used (Malmasi et al.,
2022) system as their baseline and added a knowl-
edge retrieval module to enhance their performance.
The knowledge retrieval module takes an input sen-
tence as a query and retrieves top-k related para-
graphs from Wikipedia which will be then concate-
nated and fed into the NER module. The output of
the NER module which is a token representation
of the input sentence will be fed into a linear-chain
CRF to produce the label predictions. This method
has shown an F1 score of 0.853.

Figure 1: The architecture of DAMO-NLP knowledge-
based NER system

The second-ranked team from MultiCoNER I,
USTC-NELSLIP (Chen et al., 2022), also used the
same concept of a knowledge retrieval system but
instead of retrieving top-related paragraphs from
Wikipedia, they introduced a gazetteer-adapted in-
tegration network (GAIN). This system first adapts
the representation of the gazetteer network built
from Wikidata to the XLM-RoBERTa model by
minimizing KL divergence between them. After
adaptation, these networks will be integrated for
backend-supervised NER training. This method
has also shown an F1 score of 0.853.

3 Problem Formulation

3.1 Task

MultiCoNER II is a Multilingual Complex Named
Entity Recognition shared task, offered as part of
SemEval-2023, The 17th International Workshop
on Semantic Evaluation. Given a sentence, the
task is to detect and categorize all named entities
in the sentence. To be more concrete, each word
in the sentence is tagged with Beginning-Inside-
Outside tags. The beginning tag denotes the first
word in a named entity, inside denotes other words
in a named entity, and outside means the word is
not a part of a named entity. Then, each begin-
ning and inside tags are categorized into one of 36
fine-grained labels, which are organized into 6 cat-
egories according to the WNUT 2017 (Derczynski
et al., 2017) taxonomy entity types: person, group,
corporation, location, product, and creative work.
The dataset consists of 12 languages, where each
language has between 9k-16k training sentences
and 500-900 development sentences.

3.2 Dataset

MultiCoNER II is divided into 12 languages, in-
cluding 7 of the same languages from MultiCoNER
I (Bangla, Chinese, English, Farsi, German, Hindi,
and Spanish) and 5 new languages (French, Ital-
ian, Portuguese, Swedish, and Ukrainian). The
second iteration of this task leaves out 4 previous
languages (Dutch, Korean, Russian, and Turkish)
as well as the multilingual and code-mixed tasks of
the previous competition. For our efforts, we have
simplified our exploration to look at the English
and French tasks.

Rather than the 6 coarse categories present in
MultiCoNER I common of standard NER systems,
there are instead 36 defined granular labels which
are then organized into 6 categories (see figure



Figure 2: Example sentences and labeled named entities
from MultiCoNER I (Malmasi et al., 2022) and Multi-
CoNER II

3). For each language in the dataset in both train
and development sets however, OtherCW, Other-
CORP, and TechCORP never occur, thus limiting
the dataset to 33 observed labels. Notably, Multi-
CoNER II introduces a new medical (MED) cat-
egory, and lumps the previous year’s corporation
(CORP) category into the group (GRP) category.
Examples of the difference in granularity of label-
ing between the two tasks can be seen in figure
2.

Figure 3: Coarse labels present in MultiCoNER I (top)
as compared to granular labels in MultiCoNER II (bot-
tom)

The data itself is stored in the CoNLL format,
where each token has a label of ’O’ for outside if
it is not part of an entity, ’B-<label>’ if it begins
an entity, and ’I-<label>’ if it is inside of an en-
tity after it begins. By modeling the samples in
this sequential fashion, there is no issue in working
with languages that read left to right or right to left.
For languages that have a concept of capitalization,
all samples have been made lowercase, which re-
moves the ability to use capitalization as an aid in

identifying entities.
The dataset was not released until late October,

which limited our time to explore and analyze it.
In contrast to the stated aims of the task to explore
limitations of previous methods which were brittle
to out-of-knowledge base entities and noise such as
misspellings and typos, none of those challenges
were introduced, thus leaving the novelty in the
new dataset to a new set of languages and a finer-
grained label set. However, as the dataset was
created with weak supervision, we observe that not
all of the annotations may be accurate.

While MultiCoNER I had a consistent 15,300
training and 800 development samples per lan-
guage (with the multilingual task a simple com-
bination of the 11 languages), MultiCoNER II has
more variability in the exact number of training
and development samples per language, however,
the ratios remained proportional across languages.
Each language has between 9k-16k training sen-
tences and 500-900 development sentences, though
there are notably fewer samples for Bangla, Chi-
nese, German, and Hindi than there are for En-
glish, Farsi, French, Italian, Portuguese, Spanish,
Swedish, and Ukrainian. Across each language
and dataset, there are roughly 1.25-1.5 entities per
sentence on average. The samples and number of
entities in each dataset can be seen in figure 10.

It is worth noting the imbalanced distribution of
the named entity types as shown in figure 9.

4 Proposed Methods

4.1 MulDA Translations

MulDA (Liu et al., 2021) is a data augmenta-
tion technique that focuses on multilingual NER.
MulDA uses off-the-shelf Google Cloud API as
its translation tool which supports more than 100
languages. MulDA introduced a 3-step translation
method that replaces named entities with contex-
tual placeholders before sentence translation and
then after translation, it replaces placeholders in
translated sequences with the corresponding trans-
lated entities. See Figure 4 for a detailed example
of how this is done.

In addition to translation, the MulDA paper goes
on to use a linearization technique introduced by
DAGA (Ding et al., 2020) that adds entity types
before sequence tokens after the translation. It
then trains an LSTM-based language model based
on linearized sequences. This augmentation tech-
nique helps to increase diversity by generating syn-



Figure 4: MulDA’s labeled sentence translation where
src and tgt are the source and target languages respec-
tively

thetic labeled data in multiple languages (Liu et al.,
2021). While we imitated the linearization aspect
of DAGA in our translations, we do not attempt
to do additional language generation. Thus, when
referring to MulDA in the rest of the paper, we are
referring only to section 4.1.

4.1.1 Full and Partial

For our final project, we fully implemented the
MulDA algorithm as written in the paper, replac-
ing named entities with the entity names and then
translating each entity in brackets individually. In
the MulDA code, it seems as though they make
language-specific additions that are not mentioned
in the paper. We have only implemented what was
described in the paper.

We then attempted a version of MulDA which,
instead of replacing the original entities with their
translations, replaces them with their original
forms. This version is called “MulDA Partial",
while the version that replaces the entities with
their their translated forms is called “MulDA Full".
The rationale behind doing this is that it will in-
crease diversity in the entities found in the dataset
since now entities must be recognized even if they
are from a language different than the rest of the
text. In these names, “Partial" refers to the fact that
the sentence is only partially translated (everything
but the entities) when it is added as an example to
the dataset.

Fully
Trans-
lated

Linearized Stabilized

MulDA
Partial
MulDA

Full
X

Stabilized
Partial

X

Stabilized
Full

X X

Linearized
Partial

X

Linearized
Full

X X

Table 1: This figure shows which techniques are used
for our translation techniques

4.2 Our Translations

On top of the MulDA translation technique, we
experimented with variants and subsets of the pro-
cess to identify the importance of each step and
eliminate unnecessary steps if possible. To spec-
ify, we have the “linearized” variant, which uses a
non-bracket translation scheme from DAGA (Ding
et al., 2020), the “stabilized” variant, which uses
brackets and discards “unstable” translations, and
other replacing Google Translate with other pre-
trained translation models like T5 and Helsinki.

4.2.1 Linearized
We were introduced to DAGA (Ding et al., 2020)
through MulDA (Liu et al., 2021) paper, which
is an augmentation method with language models
trained on linearized labeled sentences. Lineariza-
tion is the process of inserting entity tags before
the corresponding word as shown in figure 5 (Ding
et al., 2020).

Figure 5: An example of labeled sentence linearization

We took step 3 of MulDA and DAGA’s lineariza-
tion idea and made our translations based on that.
For each training sample, we built a linearized se-
quence, more specifically we used brackets to mark



the span of each entity and then translated the se-
quence to the target language. Figure 6 displays a
linearized sequence with brackets that will be sent
to the Google cloud for translation. This lineariza-
tion method helped us to debug the translated texts
and find the corresponding words easier. In order
to avoid having tags translated, we replaced them
with "UNK" tokens and save the tags and their cor-
responding words in a dictionary and retrieve them
after translation.

Figure 6: An example of using brackets in a linearized
sequence

We attempted an additional technique that does
not translate the entities. For this technique, we first
linearized the text, but instead of putting brackets
around the linearized text, we instead put quotes
and additional span tags surrounding the text which
indicated that the entities should not be translated
by Google Translate. For an example of how this
was done, see Figure 7.

Figure 7: How the partial method translates text

4.2.2 Stabilized
Stabilized is the closest to the original MulDA pa-
per out of our translation techniques and generates
two augmented datasets (Stabilized Full and Stabi-
lized Partial).

In the Stabilized data augmentation method, we
do not complete Step 1 of MulDA (illustrated in

Figure 4). Instead, we begin with Step 2, putting
brackets around entities and translating via Google
Translate. Then, after translating the full sentence
once for each entity, we check to see if the trans-
lations match each other. If not, we discard the
example, and don’t include it in either of the output
datasets. We theorize that this “stabilizes" Google
Translate, leading to better performance than Full
or Partial. That is, if Google Translate gives two
different translations just due to brackets around
different words in the source text, this likely indi-
cates that Google Translate is not particularly stable
or proficient at translating that sentence. Thus, by
removing results where Google Translate is not
stable, we increase the quality of the dataset.

Overall, stabilization had a significant effect on
the number of examples introduced to the two Sta-
bilized datasets. Out of 16778 examples, a full
4149 examples were dropped due to Google Trans-
late not translating the examples in a stable fash-
ion. (An additional 72 sentences were dropped
due to invalid bracketing before translation, and
52 sentences were dropped due to brackets not be-
ing found after translation, leading to a total of
4273 dropped examples.) Since the dropped ex-
amples are exactly the same between Stabilized
Full and Stabilized partial, the two datasets provide
a direct contrast to one another; in the Stabilized
Full dataset, entities are translated, whereas in the
Stabilized Partial, they are not.

4.2.3 Bracket Choice
We also ran a small-scale experiment to determine
which type of brackets led to the most stabilization.
We iterated through square brackets, curly braces,
double quotes, angular brackets, and parentheses.
Ultimately, the experiment determined that using
double quotes ('' '' , akin to Partial in Section 4.2.1)
worked the best for stabilization, with only 3481
examples needing to be dropped due to stability
in comparison to square quotes’ 4149 examples.
However, we decided to use square brackets for
our full report because 1. It more closely matched
the MulDA technique (which uses square brackets)
and 2. When translating from English to French,
Google Translate modified the quotes in 1823 ex-
amples, often times converting them into French
quotes known as “les guillemets": « ». Since the
quotes were modified, the algorithm could not find
the boundaries between the translated entities and
the rest of the text, and therefore these examples
needed to be dropped as well. Thus, overall, trans-



lating using square brackets led to more examples
being added to the datasets, despite the decrease in
stability.

4.2.4 T5 and Helsinki
Training samples of both English and French
datasets were also translated by pretrained lan-
guage models using Huggingface transformers li-
brary. For English to French translation, we used
T5-small model (Raffel et al., 2020). We also used
Helsinki-NLP/opus-mt-fr-en model (Tiedemann,
2020; Tiedemann and Thottingal, 2020) that was
specifically trained for French to English transla-
tion since T5-small model only supports one-way
translation from English to French, German, and
Romanian.

4.3 Knowledge Base (KB-NER)

We compare our perforamnce with Knowledge
Base-Named Entity Recognition (KB-NER) (Wang
et al., 2022) to compare with the previous state-of-
the-art named entity recognition model. KB-NER,
the winner of MultiCoNER I, uses knowledge-base
augmentation to append relevant context to the in-
put sentence to allow the NER model to attend to
“external” knowledge.

5 Experiments and Results

We fine-tune a pre-trained named entity recognition
model on various sets of data. The named entity
recognition model consists of a pre-trained XLM-
RoBERTa-base (Conneau et al., 2019) model with
a conditional random field classier on top. This
setup is derived directly from the baseline model
from MultiCoNER 1 and was utilized by all top-
performing teams. Per convention, we trained the
model using the AdamW optimizer with a learn-
ing rate of 1e-5. We trained each model for 20
epochs, which took about 2.5 hours with a single
A40 GPU on the Minnesota Supercomputing In-
stitute’s Agate cluster. We used macro-averaged
validation F1 score as the main evaluation metric
for comparing the performance of models trained
on various datasets.

To allow for deeper analysis of the performance
and error, we restrict our set of languages to a sin-
gle pair, English and French, out of 13 languages
from the MultiCoNER II task. As the test data
has not been released, we report performance on
the development set, which was not seen during
training.

5.1 Experiment 1: Mulda Translation

F1 P R
EN 0.7798 0.7741 0.7855

EN-M-P 0.8063 0.7986 0.8140
EN-M-F 0.7898 0.8046 0.7755

FR 0.8214 0.8145 0.8284
FR-M-P 0.8298 0.8196 0.8402
FR-M-F 0.8224 0.8261 0.8188

Table 2: Validation F1 score, precision, and recall for
MulDA translations.

Both MulDA translation techniques, full and
partial, improved the macro averaged F1 scores
on the development set. However, it was surpris-
ing to see that our variant, MulDA-Partial, which
does not translate the entity from the source lan-
guage, performed better than MulDA’s original
technique, MulDA-Full. For both languages, the
partial version performed 0.05 - 0.15 points better
than their full counterpart. This suggests that step
3 of MulDA’s translation technique which trans-
lates the entities to the target language, despite
being intuitive, adds unfavorable bias to the dataset.
Furthermore, for both languages, the precision is
higher for the full version while the recall is higher
for the partial version.

5.2 Experiment 2: Our Translation
Techniques

F1 P R
EN 0.7798 0.7741 0.7855

EN-S-P 0.7804 0.7822 0.7785
EN-S-F 0.7953 0.7889 0.8017
EN-L-P 0.7841 0.7850 0.7832
EN-L-F 0.7939 0.7692 0.8202
EN-H 0.7203 0.7125 0.7284

FR 0.8214 0.8145 0.8284
FR-S-P 0.8229 0.8160 0.8299
FR-S-F 0.8070 0.8006 0.8136
FR-L-P 0.8073 0.8121 0.8025
FR-L-F 0.8098 0.8150 0.8047
FR-T 0.7868 0.7780 0.7959

Table 3: Validation F1 score, precision, and recall for
our translations.

Our attempts to replace or take the subset of
the MulDA translation generally worsened per-
formance compared to MulDA-Partial, the best



performing MulDA. To specify, the best perform-
ing technique for English, Stable-Full, was 0.011
points lower in F1 score, while the best perform-
ing technique for French, Stable-Partial, was 0.055
points lower in F1 score. It is also noting that
the Stable-Partial, Linear-Partial, and Linear-Full
of French and the pretrained translation for both
languages actually performed worse than the not
augmented baseline, showing that naively translat-
ing the text is not enough to improve performance.
We hypothesize that this is due to inconsistencies
in the alignment between the source and the tar-
get text causing misplaced named entity tags for
the translated results. We have observed many of
these cases from our translation techniques and to
the best of our efforts attempted to filter out those
inconsistencies, but failed to improve the F1 scores
above this point.

5.3 Experiment 3: Knowledge Base
Augmentation

F1 P R
EN 0.7798 0.7741 0.7855

EN-KB 0.7849 0.7922 0.7778
EN-M-P-KB 0.7748 0.7826 0.7671
EN-M-F-KB 0.7710 0.7695 0.7725

FR 0.8214 0.8145 0.8284
FR-KB 0.8302 0.8146 0.8465

FR-M-P-KB 0.8268 0.8434 0.8109
FR-M-F-KB 0.8262 0.8367 0.8160

Table 4: Validation F1 score, precision, and recall for
top performing translations + knowledge base augmen-
tation.

This experiment compares the efficacy of the
translation techniques to the previous state-of-the-
art best-performing work, KB-NER (Wang et al.,
2022). To specify, as KB-NER merely appends
the relevant context after the original input, it can
also be applied to translation-augmented text. For
the training data, we append the relevant context
based on the ground truth entity spans provided in
the data. For the development data, to simulate a
situation where we do not know the ground truth
entities, we first predict the entities using our NER
model trained on not augmented data and use those
predicted spans to generate and append the context.

We successfully show that the performance of
MulDA translation is better than that of knowledge-
base-based augmentation for English by 0.022 F1

score and comparable for French (worse by 0.0004).
However, despite our attempt to seamlessly com-
bine these two techniques, we could not improve
the results over information retrieval augmentation.
To specify, knowledge-augmenting the translation-
augmented dataset worsened the F1 score by 0.005
- 0.01 points.

6 Error Analysis

Figure 8: Normalized confusion matrix between 34
classes, disregarding the difference between beginning
and intermediate tokens. We see that ’O’ is com-
monly incorrectly predicted across entity types, and
Other<type> are commonly confused with other more
specific versions of their broader category.

Through all of the techniques tried in this report,
common themes emerged. Overall, the most com-
mon source of error was predicting an entity type
when there was none or failing to predict any entity
type. This also makes sense, due to the vast imbal-
ance of token without an entity type label. Looking
at the top 10 most common errors across augmen-
tation techniques, the most common difficulties
across both English and French in either failing
to recognize an entity or predict one where there
isn’t occurred with products (’OtherPROD’), cre-
ative works (’VisualWork’, ’MusicalWork’, ’Writ-
tenWork’), and groups (’ORG’). In English, occa-
sionally difficult would occur with the medical cat-
egory (’Disease’). In French, locations (’Facility’,
’HumanSettlement’), creative works (’ArtWork’)
and people (’Artist’) occasionally appeared. This
may be due to the difficulties in distinguishing be-



tween longer complex names and regular writing.
In terms of confusing entity types for another,

the most common errors were confusing the per-
son types of ’Artist’, ’Athlete’, ’Politician’, and
’OtherPER’. The next most common included con-
fusing the creative work types of ’Software’ and
’VisualWork’, and the group types of ’PublicCorp’
and ’ORG’. In French, ’SportsManager’ was also
occasionally confused with ’Athlete’. This points
to the difficulty of distinguishing between similar
names without outside knowledge about their role
in society, and that based on text alone it is diffi-
cult to determine the characteristics of a catch-all
category label.

When retaining the distinction between tokens
that begin an entity (starting with a ’B-’) and those
that follow it (starting with a ’I-’), it is noticeable
that the most common errors do not include confus-
ing correct entity types for their respective begin-
ning or intermediate version. While both beginning
and intermediate entity types were occasionally
confused for the absence of an entity, this suggests
that the differences between fundamental types of
entities is much more difficult of a problem than
understanding weather a token starts or is a contin-
uing part of an entity.

A visualization of the confusion matrix when dis-
tinction between beginning and intermediate token
labels are removed (normalized for the percentage
those in the class, as the class labels are heavily
skewed) can be seen in figure 8.

7 Limitations

7.1 Google Translate

We used Google Cloud API as our translation tool
but it posses a few limitations. The first limitation
that we found was that the tags such as “MED-
Symptom" were also getting translated that we had
to store and replace them before translation and
then restore them for the final sequence. second
limitation was that sometimes the order of the to-
kens changed after translation and in this case we
used back-translation to find the corresponding tag
for entities. Other limitations such as capitalization
of tokens, dropping plural ’s’ and duplicates were
also observed that were handled after translation.

7.2 Dataset Annotations

We later realized that some samples in the train-
ing sets don’t have correct annotations. For exam-
ple in the sentence “he holds wins over tito ortiz

masakatsu funaki yuki kondo semmy schilt and mi-
noru suzuki,” all entities are athletes and should be
considered athletes in context, but for some reason
“yuki kondo” is left out as “OtherPER.” This error
seemed most common among tags of people.

We brought this up to the competition organizers,
who unfortunately informed us that “the dataset is
created with weak supervision. So things like these
are expected. The annotations are not 100% accu-
rate all the time." We have requested an estimate
for the number of inaccurate examples, but have
yet to receive a concrete reply.

8 Ethics

8.1 Environmental Risks and Cost
Data augmentation increases the size of the dataset
and consequently the training time, therefore it
results to higher development cost and CO2 emis-
sions (Feng et al., 2021). Google Cloud API offers
free translation for the first 500,000 characters, af-
ter that you will be charged monthly so the transla-
tion technique with this API can’t be free forever.

8.2 Bias
Organizations such as Amazon and Meta by releas-
ing tasks with datasets such as this project, inject
their own bias and values into the models and sys-
tems. For example, in this project tags such as
PER-Artist or OtherPER are used for entities corre-
sponding to people but how and what sources these
organizations have used for annotation is unknown.
Building models for such datasets can enforce bias
or even misinformation to users.
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