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Abstract

In 2021, the Park Lab at the University of Minnesota
released the benchmark challenge OpenMonkeyChallenge.
This challenge aims to facilitate the creation and collec-
tion of models to automatically track non-human primate
poses through various environments, and has seen 21 teams
to the competition. Our team participated in this challenge
with the aim of improving upon the existing models to as-
sist researchers in fields such as biology and biomedicine,
and improve their capabilities to gather insights into popu-
lations of non-human primates through pose and, by exten-
sion, gait analysis. After having reviewed existing literature
on both human and non-human pose estimation, our team
implemented the recently released transformer architecture,
ViTPose with image augmentation and species context. Our
team successfully contributed what would have been a com-
petitive submission to the OpenMonkeyChallenge, perform-
ing 1st place on the leaderboard. Code and results can be
found in our GitHub repo.

1. Introduction

OpenMonkeyChallenge is a benchmark challenge for 2D
non-human primate pose estimation [27]. It consists of
111,529 photographs labeled with 17 body landmarks and is
the largest non-human primate image dataset, both in num-
ber of images and number of species included. Non-human
primate pose estimation is seen as more challenging than
human pose estimation because non-human primates have
more variation in their joint ranges and body geometry [2].
Despite this, some researchers have been able to build ro-
bust models against these challenges, and achieve compara-
ble performances to pose estimation on primates [18] [14].

There have been efforts to reconstruct the pose of
macaques in 3D, as compared to the 2D pose estimation in
this challenge [2], however, the resources required to gather
this data are significant and therefore limit the practicality
of these techniques. Because of this limitation, being able

to obtain accurate pose analysis from a single 2D image is
critical for real-world applications.

Pose estimation has been applied to a wide breath of
applications for humans, such as healthcare [8, 21], as-
sisted driving [5], and video games [19]. Some of these
applications require near-real time decisions to be made
with small compute. Progress has been made in this area
through lightweight architectures such as Fast Pose Distil-
lation (FPD) [30]. Other applications such as AR manipu-
lation of fine objects require more precise estimation [10].
Models created as part of the OpenMonkeyChallenge can
be applied to study effects of drugs, infectious diseases, and
mental illnesses on monkeys. Additionally they can be used
for studies ”in the wild” such as automated monitoring of
the health of wild primates [2], or understanding their so-
cial behaviors.

2. Related Work
2.1. 2D Human Pose Estimation

Human pose estimation was pioneered by Google in
2014 [23], and progress has been supported by two popu-
lar datasets: MPII [1] and COCO [15]. These datasets, the
improvement of available compute, and expanding applica-
tions has lead to human pose estimation gaining increased
interest and performance over the years.

Many recent work tackle human pose estimation using
an end-to-end trained heatmap regression model [6]. A
prime example is the convolutional pose machine which
focuses on end-to-end training fully convolutional net-
works to classify pixels as landmark locations [24]. HR-
Net connected parallel high- and low-resolution convolu-
tion streams to combine the spatial and semantic informa-
tion from respective streams and achieved then state of the
art results in many downstream tasks including human pose
estimation [22].

Transformers are an emerging architecture which has
seen strong performance when applied to computer vision
tasks. ViTPose, for example, achieved state-of-the-art per-
formance by attaching a convolutional decoder head on top
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of the vision transformer to directly regress the heatmap of
landmark locations [26]. These transformer architectures
continue to push the limits of what information can be ex-
tracted from image data.

2.2. 2D Non-human Pose Estimation

The work done on 2D non-human pose estimation is far
more limited. Additionally, a substantial part of pose es-
timation research on primates has been done on macaque
monkeys. For example, an attention-refined light-weight
high-resolution network (HR-MPE) aimed at reducing the
computing resources required [16].

The data set we will work with is not limited to this
species. There have been some efforts towards pose esti-
mation among multiple species as well. In one example of
this, DeepLabCut has been used in order to perform pose es-
timation on different species of non-human primates, where
they showed a slight improvement on previous work with
CNNs [13].

2.3. Data Augmentation

Data augmentation can lead to a significant improvement
in the performance of computer vision models. One paper
found that a robust augmentation and regularization scheme
could have the same impact as increasing the number of
samples in a dataset by a figure of magnitude for ViT [20].
This trend appears to keep up at least until 300 million sam-
ples are used for training, which is significantly more than
the 111,529 samples in the OpenMonkeyChallenge.

More particularly to ViT, data augmentation techniques
shown to work well were both RandAugment and Mixup
[20]. Mixup linearly combines output features to create new
samples and RandAugment performs a series of transfor-
mations on an image. TensorFlow’s RandAugment imple-
mentation was used to measure ViT performance improve-
ments. Additionally, the authors also tested different values
for weight decay, due to the fact that AugReg could cause
the models to learn over a larger number of epochs [3]. Pre-
trained models could also be fine tuned using AugReg later.
In fact, this was more efficient and lead to better results [20].

One of the tools that was useful for training ViT, Ran-
dAugment, has a simple implementation and can greatly
decrease the search space for automated augmentation. It
merely takes two parameters N , the number of transfor-
mations, and M , which specifies the particular bin that
contains the magnitude of each transformation (aside from
the image and number of bins) and generates a sequence
of transformations to perform on the image. The pseu-
docode that we followed is included in section 6.2. Al-
though performance in object detection and object classifi-
cation has been shown to increase using RandAugment (and
also further improve as the number of random transforma-
tions grow) [7], we are not aware of this technique being

tested on pose estimation.
We also considered a data augmentation technique for

human pose estimation (ASDA). This particular form of
data augmentation targeted poses that were especially dif-
ficult to predict due to symmetric appearance, heavy occlu-
sion, or nearby persons, which are the current weaknesses
of CNNs [4]. However, the ASDA scheme involves cate-
gorizing parts of the human body, randomly selecting them
from a pool, and properly pasting them together in order to
perform data augmentation [4]. Given the information we
are provided in the OpenMonkeyChallenge dataset, we de-
cided it would be too complicated to implement this data
augmentation scheme.

Figure 1. Difficult situations for deep CNNs to perform pose esti-
mation [4].

3. Dataset

The OpenMonkeyChallenge has 111,529 total RGB im-
ages with 17 possible landmarks per sample. The dataset
builds on the scope of OpenMonkeyPose [2] and Macaque-
Pose [14] datasets. OpenMonkeyPose has 195,228 images
with 13 annotated landmarks, but is specifically designed
for understanding 3D movement and only contains rhesus
macaques. Additionally it was compiled using a single,
controlled environment, potentially making it difficult to ap-
ply to broad applications. The MacaquePose dataset con-
sists of only 13,083 images with 17 annotated landmarks,
sourced from an number of different environments but like-
wise only for macaques [27].

The OpenMonkeyChallenge dataset is divided into
60/20/20 train/validation/test splits, with 66,917, 22,306,
and 22,306 images respectively [27]. Each image is cropped
to contain one or more monkeys, with each crop having a
resolution of at least 500x500 pixels. These landmarks con-
sist of the nose, left and right eyes, head, neck, left and right
shoulder, left and right elbow, left and right wrist, hip, left
and right knee, left and right ankle, and tail. Notably, this
dataset is comprised of a wide variety of primate species
(26 in total), which the authors categorize as New World
(6) and Old World (14) monkeys, as well as apes (6). Their
environments are also varied, with sources including Flickr,
YouTube, three National Primate Research Centers, and the



Minnesota Zoo among others. Because of this, the Open-
MonkeyChallenge provides the strongest publicly available
dataset for the study of non-human primate images across
domains.

Previous datasets have limitations with regards to species
diversity, environments, complexity of image-capture, and
dataset size, which hinders generalization of primate pose
estimation. OpenMonkeyChallenge is designed to increase
the ability to generalize pose estimation performance across
primates, regardless of their environment [11, 29].

4. Evaluation Metrics
We will use probability of correct keypoint (PCK@ϵ

with ϵ = 0.2) and average mean per joint position error
(MPJPEi) as performance metrics. PCK@ϵ is a way of
measuring how likely it is for the model to predict any
joint’s position. MPJPEi calculates the mean distance of the
predicted joint position from the actual joint position. Both
of these metrics do normalize by the size of the bounding
box W .
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These are the metrics proposed by OpenMonkeyChallenge
to evaluate model performance.

5. Baseline Method
For the baseline we implemented HRNet. This model

was chosen as it is one of the best baseline models from the
original OpenMonkeyChallenge paper, with average preci-
sion of 0.78. Its implementation allowed us to confirm that
our pipeline works properly. The code and models used in
the HRNet paper are available through their Github repos-
itory and have been broadly implemented, providing addi-
tional troubleshooting resources if needed.

HRNet was initially proposed for human pose estimation
in 2019 [22]. Unlike previous methods that traversed low-
to-high or high-to-low resolutions, [12], HRNet proposed a
new architecture that maintained high-resolution represen-
tations through the entire model. This led to two benefits
as compared to existing models (1) improved spatial preci-
sion due to not needing to recover resolution (2) improved
capabilities for pose estimation due to repeated multiscale
fusions [22]. Figure 3 shows that HRNet performs well
against a number of state-of-the-art models.

The HRNet model architecture and weights from train-
ing on ImageNet have been implemented using PyTorch and
TensorFlow allowing for easy transfer into our own model.

Figure 2. HRNet visual from Deep High-Resolution Representa-
tion Learning for Human Pose Estimation. [22]

Figure 3. Performance of HRNet against other popular pose iden-
tification architectures. [22]

To implement our model we modified the original HRNet
by adding a 17 channel regression head. These channels
provide as output a heatmap of for each of the 17 landmarks
used by OpenMonkeyChallenge. After transferring in the
weights of the original HRNet Model, we fine-tune on the
OpenMonkeyChallenge dataset, updating the weights for
our specific task. To keep the initial complexity low, we
started with the shallowest variant of HRNet before training
deeper models.

6. Proposed Method

6.1. ViTPose

We implemented the ViTPose model [26]. This model
was selected as it has not yet been applied to the task
of non-human primate pose estimation and has recently
reached state-of-the-art performance for human pose esti-
mation. Our goal with this model was to improve upon the
current best performing model submitted to OpenMonkey-
Challenge. The paper was submitted to Arxiv in April 2022,
to document the performance of applying the excellent per-
formance seen from transformers in visual recognition tasks
to pose estimation. As their paper shows, they achieved a
significant performance improvement against other state-of-
the-art methods on the COCO validation set.



Figure 4. Comparison of ViTPose against other state-of-the-art
methods using the MS COCO validation set. The size of each
bubble represents the number of model parameters, the horizontal
axis throughput, and the vertical axis precision. [26]

The ViTPose architecture consists of non-hierarchical
vision transformers as backbones which serve to extract
feature maps for the given instances of people. The back-
bones they employed were trained on masked image mod-
eling pretext such as MAE to provide a strong weight ini-
tialization. Once the feature maps are extracted they are
passed into a lightweight decoder which processes them
by upsampling the feature maps and regressing the associ-
ated heatmaps with respect to the landmarks, similar to the
methodology for ResNet simple pose baseline [25]. This
decoder consists of just two deconvolution layers and one
prediction layer. An overview of this architecture is shown
in Figure 5.

Figure 5. Visuals from ViTPose (a) The ViTPose model. (b) The
transformer block. (c) The classic decoder. (d) The simple de-
coder. (e) The decoders for multiple datasets. [26]

Outside of its performance the ViTPose shows that it is
adjustable in regards to its simplicity, scalability, flexibil-
ity, and transferability. These traits should help us be able
to cater our implementation better to our application and
available compute. In the discussion section of their paper
Xu et. al. share their belief in the success of ViTPose when
applies to animal pose estimation; one of the reasons our
group decided to pursue this as our proposed method.

6.2. Randaugment

We used RandAugment [7] (M = 0, 2, 4, N = 3, and
num bins = 10) along with ViT. Augmentation for the im-
ages was done in the same way as described in the pseu-
docode below, but we did have to perform operations differ-
ently for the output heatmap generated for each landmark
location. This is because some operations involved trans-
formations on the coordinates of the image and others (such
as brightness and contrast) instead performed operations us-
ing filters. We applied the affine transforms to the output
heatmaps only when the former kind of transformation was
used.

Algorithm 1 RandAugment
Randaugment(N ,M , num bins, img)

1: bins ← [0 · 0.99
num bins , 1 ·

0.99
num bins , . . . , num bins ·

0.99
num bins ]

2: magnitude← bins[M ]
3: for i = 1 . . . N do
4: t← magnitude· randomChoice([Identity, ShearX,

ShearY, TranslateX, TranslateY, Rotate, Brightness,
Color, Contrast, Sharpness, Posterize, Solarize, Auto-
Contrast, Equalize])

5: if t is signed then
6: t← t· randomChoice([−1, 1])
7: end if
8: img ← apply operation(t, img)
9: end for

10: return img

In an attempt to keep the actual location of the joints
from moving out of the bounding box (given that rotation
is one of the transformations), we used a smaller magni-
tude for all operations. The rotations, which were capable
of driving the points of interest out of the bounding box,
were minor. We could visually confirm that (on a subset of
the augmented data), the augmentation did not lead to the
joints falling out of the bounding box, so we consider this
possibility unlikely.

6.3. Specie Context Tokens

The motivation behind specie context tokens is to uti-
lize the provided specie information of the monkeys. A
vanilla ViT prepends a “class” embedding before the image



Figure 6. Original sample on left; RandAugmented sample on
right.

Figure 7. Modified diagram from ViT [9] showing the idea of
specie context tokens

tokens to both extract image class information from image
patches and allow the image patches to attend to the task
context of image classification. We hypothesize that by hav-
ing 26 different learnable “class” embeddings, 1 per specie,
we allow the ViT to learn the relevant context information
for each specie and improve performance. This method
adds a negligible number of parameters (26K) and does not
add any computation, while still encouraging the model to
learn specie-specific knowledge of joint apperances and lo-
cations.

7. Experiments and Results
We conducted experiments by fine-tuning ImageNet-

pretrained models from the timm library. For all our ex-
periments, we used images resized to 224 x 224 and batch
size of 16 to train on a single A5500 GPU using the AdamW
optimizer with learning rate 1e-4. As the competition web-
site stopped accepting submissions, and we had no access to
the test data, we compared the performance of each model

Figure 8. OpenMonkeyChallenge Leaderboard from 12/18/2022

by evaluating on the validation data with the top performing
models on the current leader-board (latest submission April
2022). Since the main metric for the competition is MPJPE,
we will be focusing on this to evaluate our performance.

7.1. HRNet Baseline

Models MPJPE PCK AP # Params
HRNet w18 0.065 0.927 0.805 10M
HRNet w32 0.063 0.933 0.814 30M
HRNet w48 0.062 0.936 0.817 67M
HRNet w64 0.061 0.938 0.820 118M

Table 1. HRNet Validation Results

For our baseline, we fine-tuned 4 versions of HRNet as
provided by the timm library: w18, w32, w48, and w64.
We trained them for 20 epochs and evaluated the model that
had the lowest validation loss.

This brings us to 3rd place in the leaderboard at 0.061
MPJPE for HRNet w64.

7.2. ViTPose

Models MPJPE PCK AP # Params
s8u2 0.055 0.957 0.833 105M
s4u2 0.058 0.949 0.819 105M

s16u2 0.058 0.958 0.813 105M
s8u3 0.051 0.959 0.852 115M
s8u4 0.051 0.959 0.855 124M

Table 2. ViTPose Validation Results

We fine-tune ImageNet-pretrained ViT-base for our ViT-
Pose unless otherwise indicated. As our first set of experi-
ments with ViTPose, we experiment with two hyperparam-
eters: heatmap size and number of UpConv (transpose con-
volution) layers. To speed up the process of finding the right
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parameter, we do not train until convergence but rather train
for 5 epochs.

First, we observed that ViTPose is much slower to train
and more sensitive to the size of the target heatmap. Hence,
to speed up the training process, we experiment with differ-
ent heatmap sizes: 4, 8, and 16. This size s defines the
standard deviation of the 2D gaussian kernel centered at
the groundtruth joint locations. By sweeping multiples of
2 from 1 to 16, we report that 8 was the best size to use with
MPJPE of 0.055.

Second, we observed that the output of ViTPose is half
as big as that of HRNet. This is because the feature size of
ViTPose is 1/16 of the input image size, hence having 2 Up-
Conv layers [28] that upscales the size by a factor of 2 (as
the original ViTPose paper suggests) regresses a heatmap
that is 1/4 of the input image. We hypothesize that this loss
of spatial resolution may result in poor performance and
verify that simply increasing the number of UpConv layers,
u, will restore this spatial resolution and improve results.

This brings us to 2nd place in the leaderboard at
0.051 MPJPE for ViTPose with 4 UpConv layers.

7.3. ViTPose with RandAugment and Specie Con-
text Tokens

Models MPJPE PCK AP # Params
s8m0u2 0.055 0.958 0.833 105M
s8m0u2c 0.054 0.959 0.833 105M
s8m2u2 0.052 0.963 0.844 105M
s8m2u2c 0.050 0.964 0.850 105M
s8m4u2 0.052 0.962 0.843 105M
s8m4u2c 0.052 0.963 0.844 105M

Table 3. ViTPose with RandAugment and Specie Context Tokens
Validation Results

To further improve performance, we propose two addi-
tions to ViTPose: RandAugment and Specie Context To-
kens. All models in this section are trained for 10 epochs.

First, we observed that the validation performance
plateaus and starts decreasing around the 5th epoch. Adding
RandAugment slows down the training, but allows the
model to learn past the non-augmented limit where the
model starts to overfit. We vary the magnitude m of the aug-
mentation, which defines how skewed or jittered the color
and shape of the image is, to 0 (no augmentation), 2, 4 and
find that magnitude of 2 is the most effective in improving
the performance.

Second, we propose specie context tokens to utilize the
provided specie information. Adding context c, even though
it requires a minuscule (26K) number of extra parameters
and no additional computation, improved the performance
for all magnitudes of data augmentation.

7.4. Final Results with Large Models

Models MPJPE PCK AP # Params
base-u3 0.0468 0.9677 0.8699 115M
base-u4 0.0463 0.9671 0.8737 124M
large-u3 0.0458 0.9690 0.8741 355M
large-u4 0.0449 0.9690 0.8793 371M

Table 4. Large Models Validation Results

Using the methods and parameters we verified in the pre-
vious two sections, we train larger models for 20 epochs to
report our final performance. To specify, heatmap size s of
8, rand augment magnitude m of 2, and specie context pre-
fix token are all used for ViT-base and ViT-large with 3 and
4 UpConv layers.

This brings us to 1st place in the leaderboard at 0.045
MPJPE for ViTPose-large with 4 UpConv layers.

8. Conclusion

In this paper we successfully implemented a custom ViT-
Pose model, a state of the art Vision Transformer, to the
challenge of pose estimation of a wide range of primates.
We supplemented the use of the largest public collection of
primate images through RandAugment, which has not been
done in the context of pose estimation. Also, we prepend a
species context token to let the model learn a context em-
bedding for each specie. Through this work we were able
to achieve first-place results as compared to the published
competition results.

Looking forward, future work on this project would ex-
plore replacing the vision transformer with more compli-
cated variants, such as the Swin Transformer [17], addition-
ally connecting to additional university resources seems in-
tuitive. A more complicated future step is implementing the
ASDA augmentation approach mentioned in the data aug-
mentation section. This is expected to significantly improve
performance, however requires manual annotation work.
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